

optimizing wastewater systems

Optimized Collection System Master Plan: Overview of SIAG Role and Participation

Outline

- Introductions
- Presentation Objectives
- Overview of Optimization Process
- Optimization Test Runs on a Hypothetical Bend Collection System Model
- Recent Case Study Example for City in Indiana
- Discussion

Objectives:

- Strengthen SIAG's understanding of the Optimization tool and how it will be used in developing the Master Plan.
- Communicate how SIAG can participate in and influence the optimization process.

Optimization Benefits (recap)

- Ability to evaluate thousands of possible options
 - Transparent
 - Identifies lowest life-cycle cost solutions
 - Identifies only solutions that provide capacity
- Unbiased when compared to traditional planning methods
- >\$100M of system improvements = opportunity to look for savings and prioritize investment

How Does Optimizer WCS™ Work?

Hydraulic Model

(input from SIAG, City of Bend, and MSA Team)

Improvement Options

(input from SIAG, City of Bend, and MSA Team)

Costs

(input from SIAG, City of Bend and MSA Team)

Performance Criteria

(input from SIAG, City of Bend and MSA Team)

Once initial Optimization
Formulation is processed, alternate
Scenarios as well as Sensitivity
Runs can be performed efficiently

Bend CSMP Optimization SIAG Input

Hydraulic Model (input from SIAG)

Land Use -Community values related to density and

in on location zoning preferences. preferences).

Options (reviewed by SIAG) (reviewed by SIAG) (input from SIAG) Pipes – Alignment Open-cut pipe costs Eliminate overflows alternatives (e.g., weigh Trenchless construction costs Land-use & geol. factors **Pumps** – Provide Capital costs for new/upgraded pumps guidance on location requirements preferences for new Energy / O&M costs **Energy costs** pumps and aesthetics Capital and O&M Site restoration Land acquisition Site specific costs

Capital / O&M Costs

Storage - Location preferences and review of storage type/technology

Improvement

Treatment – Location preferences, technologies (green and traditional)

Costs for different technologies

Constr / O&M costs

Performance Criteria

- System capacity goals

Pump operating

Siting requirements

Operating flexibility

Land use needs

Nuisance issues

Discharge requirements

Discharge location(s)

Effluent volume limitations

Summary of Optimization Milestones and Opportunity for SIAG Involvement

Key Optimization Tasks and SIAG Inputs

Timing	Tasks	Date
February	 Intro to Optimization Review Life Cycle, Design Criteria, Viability Criteria 	Feb 7 SIAGFeb 21 SIAG
March	 Present pipe/pump/storage options for consideration 	Mar 7 SIAGMar 21 (as Req.)
April	Present sewer treatment options for consideration	April 4 SIAGApril 18 (as Req.)
June/July	 Review location options for pumps, pipes, storage and treatment 	Date TBD SIAG
August	Review unit cost assumptions for all options	August 15 SIAG
November	 Present initial solutions to SIAG and review all options considered to date SIAG to provide feedback on initial solutions (e.g. options to be added/removed, detailed considerations, etc.) 	• Nov 14 SIAG

Key Optimization Tasks and SIAG Inputs

Timing	Tasks	Date
January '14	 Present intermediate solutions to SIAG SIAG to provide feedback on interim solutions (e.g. options to be added/removed, detailed considerations, etc.) 	• Jan SIAG
March '14	Review final solutions with SIAG	March SIAG
May '14	Prioritize Capital Improvement Plan	May SIAG

optimizing wastewater systems

Optimizer Test Runs Using Hypothetical Bend CS Model

Bend CS Model Prep. for Optimization

- Pipe and pump options shown in blue
- Storage options shown in purple (14 locations)

Optimization Progress for Initial 200 Trial Solution Evaluations

Cost Item	Total Cost (\$ Arb) (Including O&M)
Pipes	
Pumps	
Storage	
Total Project Cost	

Generation 1 (200 Trial Solutions)

Best Solution in 1st Generation

Cost Item	Total Cost (\$ Arb) (Including O&M)
Pipes	58.3
Pumps	5.4
Storage	8.3
Total Project Cost	72.0

- Actual processing time: 0.15 hours (cloud computing using 104 cores in parallel)
- Complete hydraulic analysis of each trial solution
- Detailed life-cycle cost analysis of each trial sol.
- All costs divided by arbitrary value for purpose of demonstration

Generation 2 (400 Trial Solutions)

Best Solution in 2nd Generation

Cost Item	Total Cost (\$ Arb) (Including O&M)
Pipes	51.3
Pumps	4.3
Storage	8.7
Total Project Cost	64.3

- Actual processing time: 0.3 hours (cloud computing using 104 cores in parallel)
- Complete hydraulic analysis of each trial solution
- Detailed life-cycle cost analysis of each trial sol.
- All costs divided by arbitrary value for purpose of demonstration

Generation 5 (1,000 Trial Solutions)

Best Solution in 5th Generation

Cost Item	Total Cost (\$ Arb) (Including O&M)
Pipes	49.4
Pumps	5.9
Storage	6.1
Total Project Cost	61.4

- Actual processing time: 0.75 hours (cloud computing using 104 cores in parallel)
- Complete hydraulic analysis of each trial solution
- Detailed life-cycle cost analysis of each trial sol.
- All costs divided by arbitrary value for purpose of demonstration

Generation 10 (2,000 Trial Solutions)

Best Solution in 10th Generation

Cost Item	Total Cost (\$ Arb) (Including O&M)
Pipes	42.0
Pumps	4.3
Storage	9.3
Total Project Cost	55.6

- Actual processing time: 1.50 hours (cloud computing using 104 cores in parallel)
- Complete hydraulic analysis of each trial solution
- Detailed life-cycle cost analysis of each trial sol.
- All costs divided by arbitrary value for purpose of demonstration

Generation 25 (50,000 Trial Solutions)

Best Solution in 25th Generation

Cost Item	Total Cost (\$ Arb) (Including O&M)
Pipes	31.2
Pumps	5.4
Storage	6.1
Total Project Cost	42.7

- Actual processing time: 3.75 hours (cloud computing using 104 cores in parallel)
- Complete hydraulic analysis of each trial solution
- Detailed life-cycle cost analysis of each trial sol.
- All costs divided by arbitrary value for purpose of demonstration

Generation 50 (100,000 Trial Solutions)

Best Solution in 50th Generation

Cost Item	Total Cost (\$ Arb) (Including O&M)
Pipes	21.7
Pumps	3.5
Storage	10.1
Total Project Cost	35.3

- Actual processing time: 7.50 hours (cloud computing using 104 cores in parallel)
- Complete hydraulic analysis of each trial solution
- Detailed life-cycle cost analysis of each trial sol.
- All costs divided by arbitrary value for purpose of demonstration

Generation 75 (150,000 Trial Solutions)

Best Solution in 75th Generation

Cost Item	Total Cost (\$ Arb) (Including O&M)
Pipes	21.7
Pumps	3.5
Storage	10.1
Total Project Cost	35.3

- Actual processing time: 11.25 hours (cloud computing using 104 cores in parallel)
- Complete hydraulic analysis of each trial solution
- Detailed life-cycle cost analysis of each trial sol.
- All costs divided by arbitrary value for purpose of demonstration

Generation 100 (200,000 Trial Solutions)

Best Solution in 100th Generation

Cost Item	Total Cost (\$ Arb) (Including O&M)
Pipes	10.4
Pumps	2.7
Storage	10.7
Total Project Cost	23.8

- Actual processing time: 15.00 hours (cloud computing using 104 cores in parallel)
- Complete hydraulic analysis of each trial solution
- Detailed life-cycle cost analysis of each trial sol.
- All costs divided by arbitrary value for purpose of demonstration

Generation 125 (250,000 Trial Solutions)

Best Solution in 125th Generation

Cost Item	Total Cost (\$ Arb) (Including O&M)
Pipes	7.6
Pumps	5.9
Storage	9.1
Total Project Cost	22.6

- Actual processing time: 18.75 hours (cloud computing using 104 cores in parallel)
- Complete hydraulic analysis of each trial solution
- Detailed life-cycle cost analysis of each trial sol.
- All costs divided by arbitrary value for purpose of demonstration

Example Sensitivity Analysis on Loadings

Option 1: \$13.7 M in Pipe Improvements (for Base loading)

Example Sensitivity Analysis on Loadings

Option 2, \$20.2 M in Pipe Improvements (for Base loading + 20%)

optimizing wastewater systems

Discussion

optimizing water systems

CSO LTCP Optimization for South Bend, Indiana

Baseline LTCP Solution Agreed with EPA

Cost Item	Baseline Solution (\$M)		
Conveyance	149.83		
Pump Station	0.00		
Linear Storage	42.66		
Storage Tank	99.81		
Relining	13.04		
RTC	0.00		
Green Technology	0.00		
Total Construction Cost	305.34		
Eng/Leg/Adm. (20%)	61.07		
Total Capital Cost	366.41		
Present Worth O&M	45.61		
TOTAL PROJECT COST	412.02		

Comparison of Baseline and Optimized Solutions

Cost Item	Baseline Solution (\$M)	Optimized Solutions					
		Solution 1 (\$M)	Solution 2 (\$M)	Solution 3 Optimized Solution	Solution 4 (\$M)	Solution 5 (\$M)	
Conveyance	149.83	114.40	114.40	114.40	114.40	114.40	
Pump Station	-	1.25	1.25	1.25	1.25	1.25	
Linear Storage	42.66	13.96	13.96	13.96	13.96	13.96	
Storage Tank	99.80	123.62	116.82	63.28	95.81	96.68	
Relining	13.04	3.51	3.51	2.18	2.67	2.56	
RTC	-	-	2.67	2.67	2.67	2.67	
Green Technology	-		-	27.39	19.04	15.06	
Total Construction Cost	305.34	256.75	252.62	225.13	249.80	246.58	
Engineering/Legal/Admin (20%)	61.07	51.35	50.52	45.03	49.96	49.32	
Total Capital Cost	<u>366.40</u>	308.10	303.14	<u>270.16</u>	299.76	295.90	
Present Worth O&M	45.61	42.02	40.84	29.40	37.45	35.92	
TOTAL PROJECT COST	412.01	350.11	343.98	299.56	337.21	331.82	
Savings		61.90	68.04	112.46	74.80	80.19	
		15%	17%	27%	18%	19%	

Prioritization of Projects for Maximum Impact

optimizing wastewater systems

Discussion