PIPES, PUMPS, AND STORAGE FOR OPTIMIZATION

Sewer Infrastructure Advisory Group

March 7, 2013

PRESENTATION CONTENTS

- Overview of Pipe, Pump, and Storage information used in the Optimization model
- Provide information about "What's in the Toolbox"
 - Pipe alternatives
 - Pump alternatives
 - Storage Alternatives
- Discuss how "Community Values" might be considered in Optimization

Why are We Discussing This?

- To develop common understanding of the elements that comprise conveyance system alternatives
 - Build on our understanding of system deficiencies
 - Verify that we are considering all useful alternatives
 - Hone in on best alternatives for specific issues
 - Discuss using a "Base Cost" for initial Optimization
 - Explore how some higher cost alternatives may have higher value to the community

Gravity Pipes – Hydraulic Model Identifies Deficiencies

PIPE AND PUMPS IN OPTIMIZATION

- Pipe Alternatives In Response to Hydraulic Deficiencies
 - Replace existing pipe in existing alignments
 - Parallel existing pipe in existing alignments
 - New pipe in new alignments
 - Rehabilitate existing pipe in existing alignments
 - In response to pipes in poor condition
 - Lets us continue to use the existing capacity into the future

Optimization responds to both hydraulics and cost

Optimization responds to both hydraulics and cost

 Force Mains - Optimization responds to both hydraulics and cost

- Optimization responds to both hydraulics and cost using;
 - Diameter
 - Depth
 - Material
 - Installation Technique
 - → To Identify a <u>best cost solution</u>

TECHNOLOGY SELECTION

- Remember that <u>comparable</u> costs are critical to the accuracy of the optimization process
- Life Cycle Costs required for the optimization:
 - Capital
 - Operations
 - Maintenance
 - Energy
 - Replacement
- Must have confidence in solutions

PIPE AND MANHOLE MATERIALS

Base Cost in Optimization - PVC (City of Bend Standard Sewer Pipe Material)

Polyvinyl Chloride (PVC)

Concrete Pipe and Manholes (Plastic Lined)

High Density Polyethylene (HDPE) Pipe and Manholes

PIPE AND MANHOLE INSTALLATION TECHNIQUES

Cost Basis in Optimization – Open Cut Trench

Cut and Cover Trenching

Issues and Concerns

Significant area impact

PIPE INSTALLATION TECHNIQUES - SPECIAL

Unique Costs – Assigned in Optimization first Run

Issues and Concerns

- Geotechnical conditions
- Line and grade control

Bore and Jack

Directional Drilling

PIPE INSTALLATION - ALTERNATIVES

 Potential Savings Through Innovative Techniques at the Contractors Option – Not Considered in Optimization

<u>Issues</u>

- Geotechnical conditions
- Contractor experience
- Availability of equipment

Saw Trenching

Rock Sawing

PIPE REHABILITATION - ALTERNATIVES

- Unique Costs Assigned in Optimization Refinement Phase
- Value Proposition for Unique Locations

Slip Lining

PIPE REHABILITATION - ALTERNATIVES

- Unique Costs Assigned in Optimization Refinement Phase
- Value Proposition for Unique Locations

Issues and Concerns

- · Geotechnical conditions
- Depth and size limitations
- Line and grade control

DISCUSSION

Are there additional pipe options that should be considered?

PUMPING FOR OPTIMIZATION

- Pumping Alternatives
 - Area Pump Stations
 - Regional Pump Stations

Objective

Strategically located Area / regional facilities
 With dedicated Force Mains only
 Per City Standards no shared Force Mains

- What we do not expect to evaluate in Optimization
 - Individual Residential Pump Stations (Low Pressure Sewer Networks)
 - Vacuum Sewers Not Permitted by City Standards
- A subject for discrete
- No City-owned Individual Residential Pump Stations

PUMPING ALTERNATIVES

Area Pump Stations

- Variable Speed (VFD) Pumps
- Wet Well
- Standby Power / Pump
- Bypass Pumping Facilities
- Odor Control
- Instrumentation & Controls
- Telemetry

PUMPING ALTERNATIVES

Regional Pump Stations

- Variable Speed (VFD) Pumps
- Wet Well
- Standby Power / Pump
- Bypass Pumping Facilities
- Odor Control
- Instrumentation & Controls
- Telemetry

PUMPING FOR OPTIMIZATION SUMMARY

- Pumping Alternatives
 - Area Pump Stations
 - Regional Pump Stations
- Life Cycle Costs required for the optimization
 - Capital ← Value Proposition
 - Operations
 - Maintenance
 - Energy
 - Replacement
- Must have confidence in solutions
 - Strategically Located Area / Regional Facilities

DISCUSSION

Are there additional pump options that should be considered?

DISCUSSION

Value Propositions

- Does SIAG concur with incorporating a buffer zone, and odor control facilities in the capital cost of Pump Stations?
- Where a buffer is needed, how wide should it be? 20 feet setback, 50 feet, 100 feet?

Sewage Storage for Optimization

Storage Alternatives – Typically Used for Combined
 Sewer Systems, not for Sewage Only Sewer Systems

Inline Storage

- Sewage flows through the "pipe" on daily basis
- Reserve volume is available in the "pipe" to store some of the peak flow as it passes through

Offline Storage

- Sewage does not flow through the storage facility on a daily basis
- Sewage is diverted to the storage facility during peak wet weather, and is sent back to the system when the peak subsides

EXAMPLE OF STORAGE TECHNOLOGY

In-line Raw Sewage Storage Alternatives

- Usually a big pipe or box culvert
- Probably best deployed 'higher' in the system
- Important to capture the 'real' initial cost for the cost basis
- Important to capture the 'real'
 O&M cost and resource
 commitment for the cost basis

EXAMPLE OF STORAGE TECHNOLOGY

Off-line Raw Sewage Storage Alternatives

- Tank or basin or vault
- More applicable 'lower' in the system
- Important to capture the 'real' initial and O&M costs for the cost basis

DISCUSSION

- Should offline storage be considered as an alternative
- Are there additional storage options that should be considered