

MAKING SUSTAINABILITY WORK

Bend Community Greenhouse Gas Inventory Fiscal Year 2015-16

Presented by

Aaron Toneys

Senior Associate, Good Company

8/2/18

Presentation Overview

- Greenhouse gas (GHG) inventory 101
- Sector-based emissions inventory results
 - Building energy
 - Transportation
 - Emissions forecast to 2040
- Emissions from household consumption
- Inventory results and climate action planning

What is being measured?

- GHG Inventory is measuring the weight of GHGs
- Convert all gases into metric tons of carbon dioxide equivalent (MT CO₂e) using GWP

Greenhouse Gases	Chemical Formula	Global Warming Potential (100 year)
Carbon dioxide	CO_2	1
Methane	CH ₄	28
Nitrous oxide	N_2O	265
Hydrofluorocarbons	$C_xH_yF_z$	12 - 12,000
Source: IPCC 5th Assessment Report, 2014		

What is 1 MT CO₂e?

One MT CO₂e is equal to any one of the following:

- one passenger vehicle driven 2,500 miles
- 10% of one home's energy use for a year
- 40 propane cylinders for home BBQs
- 1.2 acres of US forest sequestration for 1 year

Inventory Boundaries

- Geographic boundary: City of Bend, Urban Growth Boundary
- Time period: Fiscal Year 2015-16
- Emissions sources:
 - Stationary energy
 - Transportation
 - Waste
 - Refrigerant leakage

Sector-based emissions

- Household consumption of goods and food
- Upstream energy production

Community-wide Results

Sector-based Community GHG Emissions

Building Energy = 56% of emissions

Electricity use up 5%, 2015 to 2017

Stationary Energy – Natural Gas

Natural gas use up 30%, 2015 to 2017

Electricity purchases by utility for FY16

Two accounting methods for electricity

Community renewable energy purchases

Transportation emissions by source

Percentage of Bend fleet electrified

Community-wide Results

Per Capita and HH Equivalencies

- 2016 GHG Emissions = 945,000 MT CO₂e*
 - Per Capita = 11.3 MT CO₂e / person
 - Per Household = 27.8 MT CO₂e / household
- Equivalencies Per Capita
 - Carbon Offset Cost (\$) = \$170 / year**
 - Tree Seedlings Grown for 10 Years = 293 / year
- Equivalencies Per Household
 - Carbon Offset Cost (\$) = \$417 / year**
 - Tree Seedlings Grown for 10 Years = 720 / year

^{*}Uses market-based electricity emissions

^{**}Assumes a carbon offset cost of \$15 / MT CO₂e

Bend's emissions forecast to 2040

Consumption-based Emissions

Community Emissions with Consumption

Consumption-based Emissions

Community Emissions with Consumption

Consumption-based Emissions

Oregon emissions trends with consumption

Inventory results and climate action planning

- Bend's largest sources are similar to other communities and have known action opportunities
- Frequency of sector-based community inventories is typically every 2 – 5 years
- Work with partners ODOT and ODEQ to improve inventory data / modeling
- Consumption-based emissions are large, and therefore need to be addressed in CAP, but are currently difficult to track accurately over time
- Community GHG calculator (ClearPath) has useful climate action features - forecasts, planning scenarios, & monitoring and tracking

Thank you!

Aaron Toneys, Senior Associate 541.341.4663 x218 aaron.toneys@goodcompany.com