

Technical Advisory Committee (TAC) Meeting October 5, 2022

Agenda Item #1: Call to Order & Introductions – Tyler Deke

TAC members

- Sharon Smith, Bend La Pine Schools
- Henry Stroud, Bend Park & Recreation
- Robin Lewis, City of Bend
- Andrea Breault, CET
- Greg Bryant, resident
- Liza Hamada, resident
- Mike Beaulieu, COCC
- Brian Potwin, Commute Options
- Peter Russell, Deschutes County
- Dave Thomson, Deschutes BPAC
- Rick Williams, ODOT Region 4
- Casey Bergh, OSU Cascades

Bend MPO Staff

- Tyler Deke, Manager
- Andrea Napoli, Senior Planner
- Jovi Anderson, Program Coordinator

- Cameron Prow, TypeWrite II (recorder)
- Members of the public, visitors and presenters will be asked to introduce with name and entity.

Agenda Item #2: Remote Participation Guidelines

Jovi Anderson

- You will be on mute when you first join the meeting.
- Technical difficulties during the meeting? Raise Hand

- Please use the raise hand to speak next.
- If you join the webinar by phone, dial *9 to raise/lower hand.
- This meeting will be recorded and is available as a live streaming event on YouTube. You can review this YouTube event on the City of Bend YouTube Channel.

Image (Left) shows you are muted and camera is off.

Agenda Item # 3: Review and approve July 6, 2022 and August 3, 2022 draft meeting summaries

Recommended language for motion: I move approval of the July 6, 2022 and August 3, 2022 meeting summaries as presented

Agenda Item # 4: Mobility Hubs Feasibility Study Overview – Andrea Napoli

BEND MOBILITY HUBS FEASIBILITY STUDY Overview

OCTOBER 2022

PRESENTATION OUTLINE

- What is a Mobility Hub?
- Why Mobility Hubs in Bend?
- Project Outline and Timeframe
- Objectives Developed
- Market Analysis
- Location Recommendations
- Mobility Hub Types and Features
- Implementation
- Public Engagement Summary
- Current and Next Steps

WHAT IS A MOBILITY HUB?

Primarily, mobility hubs are places where people can access multiple modes of transportation and easily make connections between public transit and other mobility options.

- Intended to make using transit easier/more efficient
- Scalable
- Strategic approach to manage personal vehicle demand, parking, emissions
- Can be implemented through public-private partnerships

WHY MOBILITY HUBS IN BEND?

Identified in:

2019 Bend Transportation System Plan (TSP)

2020 Cascades East Transit (CET) Transit Master Plan (TMP)

To use mobility hubs to:

- Move away from current 'hub-and-spoke' transit system
 - Create a more multi-centric network
 - Reduce pressure on Hawthorne Station
 - Increase efficiency: Fewer transfers needed, quicker/more direct trips
 - Improve access to transit: "Last-mile" options
- Increase transportation options in Bend
 - Reduce reliance on cars / single occupancy
 - Reduction of vehicle miles traveled (VMT) and GHG emissions

KEY QUESTIONS OF STUDY

Purpose: To explore the feasibility of mobility hubs in Bend and identify opportunities for implementation.

Lots of questions & needs...

- How have other peer agencies implemented mobility hubs?
- What is the current and future market demand for mobility hub services in Bend?
- What defines a "successful" mobility hub in Bend?
- What "types" of mobility hubs and features make sense in Bend?
- Assess near- and longer-term opportunities
- Develop design guidance and an implementation strategy
- Develop performance measures (specific to a pilot project)

PROJECT OUTLINE AND TIMEFRAME

Technical Advisory Committee (TAC) Representation

- Commute Options
- Environmental Center
- Council on Aging
- OSU-Cascades
- Bend Park and Rec Dist
- Deschutes Co Library
- ▶ Bend/La Pine School Dist
- People w/ disabilities
- Transit riders / advocates

- Older adults
- Low-income individuals
- Educational institutions
- ▶ Bicycle / pedestrian advocates
- Health and human services
- Cascades East Transit
- City of Bend
- Deschutes County

Extensive Public Engagement Efforts by CET

- 432 responses, online survey (7 in Spanish)
- 13 events reaching 500+ people in 5 priority hub locations
- 3 events focused on Spanish-speaking communities
- 5,000 people reached through shared social media posts
- ▶ 7 media outlets provided coverage
- ▶ 9 of 10 respondents support mobility hubs

OBJECTIVES DEVELOPED

The "framework" for defining what a successful mobility hub program in Bend should look like...

Create a decentralized transit network

Increase transit accessibility and equity for all users

Focus on placemaking

Identify public/private partnerships

Create context-dependent, scalable, cost-effective hubs

Reduce reliance on single occupancy vehicles

MARKET ANALYSIS: METHODOLOGY

To assess current and future demand for mobility hubs and services.

MARKET ANALYSIS: OPPORTUNITIES

Types of Riders/Trips Most Likely to be Served by Mobility Hubs in Bend:

```
#1 All-purpose Riders and Equity Populations
```

- #2 Tourism and Recreational Riders
- #3 Intercity Trips
- #4 "Choice" Commuters
- #5 Students
- #6 Major Employers

Potential partnerships/parties that may be interested in mobility hub development:

- Large Employment Centers & Healthcare
- Developers
- Colleges/Universities

- Business & Neighborhood Associations
- Resort/Hospitality/Breweries/Venues
- Social Services

MARKET ANALYSIS: LOCATION IDENTIFICATION

Evaluation criteria developed to identify locations...

Transportation Network Factors

- Proximity to existing or planned transit service
- Access to bike/ped system

Community Factors

- Population density
- Employment density
- Low income HHs
- HHs w/out a vehicle
- Older adults

Land Use and Development Potential

- Existing or projected density
- Levels of current activity
- Zoning
- Redevelopment potential

MARKET ANALYSIS, CONT.

When applying scores to the criteria...

LOCATION RECOMMENDATIONS

~ 2 - 5 years: Near-term / Priority Areas

~ 5 – 10 years: Longer-term Areas

Note: Flexibility is key to seizing opportunities. **Prioritization should not preclude developing a mobility hub "out of order"** if a land acquisition or funding opportunity arises.

MOBILITY HUB TYPOLOGIES & FEATURES

Types: Specific to Bend, based on the location's surroundings.

Typology	Context	Location		
Major Hub	Employment Hubs and Retail/Shopping Districts	Downtown, Hawthorne Station, Old Mill District		
Secondary Hub	Institutional and Emerging Urban Districts: large trip generators with high levels of peak-hour activity	OSU Cascades Campus, COCC Campus, East Bend (St. Charles/Forum Shopping Center)		
Gateway Hub	Regional Entry Points into Bend's Transit System	North Bend Cascade Village Mall / Bend River Promenade area and South 3rd district		

Features: Based on type, context, location.

PHASING OF FFATURES + FLEMENTS

Lower Investment

Phase 1

- Info kiosk, signage, and wayfinding
- Benches, trash can, and bicycle racks
- (2-4) on-street flex mobility spaces for dockless bikeshare or scooter share
- (2-4) on- or off-street flex mobility spaces for TNC and taxi pick-up/drop-off

Phase 2

- Expanded on and offstreet flex mobility spaces for bikeshare, scootershare, TNC, and taxi
- Covered shelters, improved lighting, fare purchase kiosks
- · Secure bike lockers
- Placemaking elements including trees, public art, landscaping, food carts, interactive games

Phase 3

Investment

- Transit/customer service center- building with restrooms, indoor waiting areas, USB charging ports, WiFi
- Transit: Bus pads or bays, transit frequency/service upgrades
- Minimum of (6) dedicated on-street parking spaces for flex mobility (bike and scooter share)
- Minimum of (6) off-street parking spaces for dedicated flex mobility space (TNC and taxi drop-off/pick up)
- Electrification to support real-time information displays and EV charging
- (4-6) EV charging stalls

IMPLEMENTATION: PHASING

IMPLEMENTATION: NETWORK DEVELOPMENT

Points

Future Mobility Hub Network Multicentric & Interconnected

- Major Hubs
- Secondary Hubs
- Mobility Points

PUBLIC ENGAGEMENT SUMMARY

From In-person Events:

Location Preferences (263 total responses)

Top 10 Amenity Preferences (835 total responses)

- Covered shelters
- Real-time transit info
- 3. Secure bike parking
- 4. Food trucks/coffee
- 5. Pedestrian improvements
- 6. Benches
- 7. Wayfinding and route info
- 8. Improved lighting
- 9. Indoor transit center
- 10. Bikeshare

From Online Survey (432 surveys submitted):

CURRENT & NEXT STEPS

Pilot Project Development

- CET currently in discussions with City for potential downtown pilot location
 - If feasible, then begin outreach to neighboring property owners

Incorporate Results of Study

- Currently drafting amendments to City of Bend Development Code and Comprehensive Plan
- Study to be amended into CETs TMP as technical appendix

Pursuing First Major Mobility Hub Site

- CET has funding available to purchase Phase 2/3 site by 2024
 - Realtor retained
- Continuing and future discussions with developers / property owners

Thank you!

Questions?

Andrea Napoli, AICP

Bend MPO Project Manager

anapoli@bendoregon.gov

Derek Hofbauer

COIC Outreach + Engagement
Administrator

dhofbauer@coic.org

CET is hosting the project webpage on the CET website:

https://cascadeseasttransit.com/about/bend-mobility-hub-feasibility-study/

Agenda Item # 5: CET Electric Technology Feasibility Study Overview – Derek Hofbauer, CET

CET Electric Technology Feasibility Study Key Findings

Bend MPO Technical Advisory Committee

October 5, 2022

Operated by COIC

WHY CONDUCT AN ELECTRIC TECHNOLOGY FEASIBILITY STUDY?

- CET is seeking opportunities to reduce reliance on fossil fuels and transition to alternative fuel sources
- The development of new mobility hubs in Bend and the redesign of the Hawthorne Station parking lot present opportunities to explore electric vehicle charging station infrastructure
- CET can become more competitive with grant applications by incorporating low or no-emission vehicles into its fleet

Photo credit: Bend Bulletin

PROJECT OVERVIEW

- Project Objectives
 - Develop CET's first strategic roadmap toward fleet electrification
- Project Approach
 - Analyze CET's transit service.
 - Determine which of CET's blocks are feasible with either battery electric 35' buses or cutaways (15' buses) in the operating conditions anticipated in CET's service environment.
 - Conduct a high-level financial analysis of transitioning those feasible blocks to battery electric technology.

FACTORS AFFECTING ZERO EMISSION BUS (ZEB) RANGE

· Route characteristics: speed, stops, grade

Ridership

Climate: Heating and cooling

Battery degradation

Operator

ANALYSIS SCENARIOS

- CTE modeled all of CET's service blocks to assess the feasibility of the blocks running with battery electric buses.
- CTE modeled 3 main scenarios:
 - Overnight depot plug-in charging only
 - Overnight depot plug-in charging + midday depot plug-in charging with electric heat
 - Overnight depot plug-in charging + midday depot plug-in charging with diesel heat

OVERNIGHT CHARGE FEASIBILITY BLOCKS FOR LARGE BUSES (35 FEET)

- Ride the River and Lava Butte recreation services are the most feasible
- Shorter Community Connector and Bend Fixed Routes are likely feasible
- Longer Community Connector, Bend Fixed Routes and Mt. Bachelor shuttles are not feasible

OVERNIGHT + MIDDAY CHARGE FEASIBILITY BLOCKS FOR LARGE BUSES WITH ELECTRIC HEAT

^{*}Feasible = feasible under strenuous conditions

^{*}Likely feasible = feasible under nominal conditions, but not all strenuous conditions

OVERNIGHT CHARGE FEASIBILITY BLOCKS FOR MID-SIZE CUTAWAY BUSES

Smaller vehicles operating on shorter Community Connector Routes, Bend and Redmond Dial-A-Ride routes, and Redmond Deviated Flex Routes are feasible with an overnight charge

Assumes HVAC is operating 50% of the time in service for all Demand Response and Deviated Flex blocks

ELECTRIC BUS FEASIBILITY SUMMARY

	,	With Electric Hea	t	With Diesel Heat			
Route Type	Overnight Charge Only	Overnight + Midday Depot Charge	Overnight + Midday Depot High-Power Charge	Overnight Charge Only	Overnight + Midday Depot Charge	Overnight + Midday Depot High- Power Charge	
Bend Fixed Routes ¹	0 of 17	0 of 17	2 of 17	0 of 17	0 of 17	14 of 17	
Community Connectors	0 of 15	9 of 15	10 of 15	0 of 15	10 of 15	12 of 15	
Recreational Services ²	4 of 13	10 of 13	12 of 13	4 of 13	11 of 13	12 of 13	
Deviated Flex Routes ³	0 of 4	0 of 4	0 of 4	0 of 4	0 of 4	0 of 4	
Bend Dial-a Ride	6 of 15	6 of 15	6 of 15	6 of 15	6 of 15	6 of 15	
Rural Dial-a-Ride ⁴	2 of 11	2 of 11	2 of 11	2 of 11	2 of 11	2 of 11	

WHAT DOES THIS MEAN FOR CET?

- The majority of CET's current Community Connector and Recreational Services blocks would be a good starting point for BEB deployment.
- Blocks running cutaways will be more difficult to transition to BEB right now.
 - BEB technology is improving.
 - Block changes could be made to better support electric cutaways.
- On-route charging could increase feasibility of CET's blocks, but more details on the Mobility Hub transition is needed for clarity.

STUDY RECOMMENDATIONS

- The majority of CET's current Community Connector and Recreational Services blocks would be a good starting point for BEB deployment.
- Blocks running cutaways will be more difficult to transition to BEB right now.
 - BEB technology is improving.
 - Block changes could be made to better support electric cutaways.
- On-route charging could increase feasibility of CET's blocks, but more details on the Mobility Hub transition is needed for clarity.

NEXT STEPS

- Research alternative fuel types for CET vehicles:
 - Compressed Natural Gas (CNG)
 - Renewable Natural Gas
 - Propane
- Seek grant opportunities to assess facility needs for EV charging infrastructure and/or alternative fuels storage systems
- Coordinate with community partners to assess EV utilization for shuttles and microtransit services like Ride Bend

CAPITAL COSTS

- CET's total active fleet is 70 vehicles (37 are 35' buses, 33 are 15' buses) operating a total of 1,811,128 miles per year.
- Assumes each vehicle in CET's fleet is replaced once with either a ZEB or internal combustion engine (ICE) bus.
- Assumes the replacement of ICE buses with ZEBs on currently feasible blocks.

	# Z	EB	· Total ZEB Miles ·	Bus Costs		Fueling Infrastructure Costs		Total Capital
	# of 35'	# of 15'	· Iotai EED Miles	ZEB	ICE	ZEB	ICE	Costs
Baseline Fleet (No ZEBs)					\$12.1M		-	\$12.1M
BEB Overnight Charge Only + ICE Fleet	4	4	34,450	\$4.3M	\$10.7M	\$742,500	-	\$15.7M
BEB Overnight + Midday Charge (Electric Heat) + ICE Fleet	11	4	400,204	\$10.0M	\$9.2M	\$2.2M	-	\$21.4M
BEB Overnight + Midday Charge (Electric Heat) + ICE Fleet	13	4	468,147	\$11.9M	\$8.8M	\$2.2M	-	\$22.9M
FCEB + ICE Fleet	31		1,129,828	\$33.4M	\$5.3M	\$6.0M	-	\$44.7M

LIFECYCLE COSTS

- Assumed 12 year life for 35' buses and 7 year life for 15' buses.
- 19,655,967 lifecycle miles
- · Lifecycle costs include capital, fuel, maintenance, and mid-life overhaul costs

	# 2	ÆB	Lifecycle Costs					
	# of 35'	# of 15'	Bus Capital Costs	Infrastructure Capital Costs	Fueling Costs	Maintenance Costs	Total Cost per Mile	
Baseline Fleet (No ZEBs)			\$12.1M		\$10.0M	\$10.9M	\$1.68/mile	
BEB Overnight Charge Only + ICE Fleet	4	4	\$15.0M	\$742,500	\$10.1M	\$10.6M	\$1.85/mile	
BEB Overnight + Midday Charge (Electric Heat) + ICE Fleet	11	4	\$19.2M	\$2.2M	\$9.6M	\$8.8M	\$2.02/mile	
BEB Overnight + Midday Charge (Electric Heat) + ICE Fleet	13	4	\$20.7M	\$2.2M	\$9.8M	\$8.6M	\$2.10/mile	
FCEB + ICE Fleet	31		\$38.7M	\$6.0M	\$15.2M	\$11.3M	\$3.62/mile	

Agenda Item # 6: Member Roundtable

Agenda Item #7: Public Comment

Agenda Item # 8: Next TAC meeting

■ The next TAC meeting is scheduled for November 2nd at 10 am

Agenda Item # 9: Adjourn